Year :2018 Full Marks: 100 Pass Marks: 45

Level: Bachelor Programme: BE Course: Physics

: 3hrs. Time

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks. Attempt all the questions.

- Point out the differences between Simple linear harmonic motion and angular harmonic motion. Show that the radius of gyration is equal to distance from the centre of suspension to center of gravity of a compound pendulum, when the time period is minimum.
- A simple harmonic transverse wave is propagating along a string towards the left direction as shown if figure. Figure shows a plot of displacement as a function of position at time t= 0. The string tension is 3.6 N and its linear density is 25 g/m. Calculate:
 - The amplitude i.
 - The wavelength ii.
 - Wave speed iii.
 - The period iv.
 - The maximum particle speed in the string.
 - Write an equation describing the traveling wave. vi.

a) Derive expression for determination of wavelength of light by using Newton's ring method when reflected light forms bright ring. Express the relation between optical and geometrical path.

What is specific rotation of light? Explain how it is determined in laboratory.

laboratory.

b) A sugar solution in a tube of length 10 cm produces optical rotation of 15°. The solution is then diluted to one fifth of it's previous concentration. Find the optical rotation produced by 25 cm long tube containing the diluted solution.

containing the directors.

Define electric dipole. Find the electric field at a point along equatorial line such that the point is not lying along the direction perpendicular to the center of dipole.

the center of dipole.

The magnitude of the average electric filed normally present in the earth's atmosphere just above the surface of the earth is about 150 N/C, directed downward (radially inward, towards the center of earth). What is the total net surface charge carried by the Earth? Assume the Earth to be a conductor.

4. a) State Biot and Savart's law. Derive an expression for magnetic field intensity at a point along the axis of a current carrying circular loop.

b) A solenoid has an inductance of 100 H and a resistance of 150 ohms. If it is connected to a 100 volt battery, how long will it take for the current to reach one half of its final equilibrium values?

5. a) Derive the Maxwell's electromagnetic wave equations with their 7+2 physical significance.

- b) A circuit has L=10mh and C=10 μ F. How much resistance should be added to circuit so that the frequency of oscillation will be 1% less than that of free LC oscillation.
- 6. a) An electron is trapped in an one dimensional infinite potential well having width "b" such that;

 $V = \infty \text{ for } x \le 0 \text{ and } x \ge b$ V = 0 for 0 < x < b

Using boundary condition, prove that the energy in potential well is quantized.

b) The time of reverberation of an empty hall without and with 600 audiences is 1.8s and 1.6s respectively. Find the reverberation time with 1000 audiences in the hall.(Do not use unitary method to solve)

2×5

7. Write short notes on: (Any two)

- a) Spontaneous and stimulated emission of radiation
- b) Types of semi-conductor Dopping
- c) Hall effect

POKHARA UNIVERSITY

Level: Bachelor Programme: BE Course: Physics	Semester: Spring	Year : 2018 Full Marks: 100 Pass Marks: 45 Time : 3hrs.	
Candidates are require as practicable. The figures in the mare an area and the question of the property and the question of the property and the question of the property and the question of	ed to give their answers in gin indicate full marks.		•
that center of osci	en damped oscillation and llation of compound per	idulati Moo oojona me	2+7
of 10N. A wave of frequency of 100 H	as a linear mass density of the string has amplitude is travelling in negative to the equation with appropriating rate does the wave transport to the string of the string	x-direction. te units.	4+2
a) Define Newton's R	ne the expression to find I light using Newton's Ring	the unknown wavelength	2+7
b) A class room has of 3.5 sec. calculate t	dimensions 20x15x5 m ³ . The total absorption of its	The reverberation time is	3+3
absorption coefficients a) Define electric que electric potential de lying along the axis	uardrupole. Hence determine to quardrupole, at a poin	nine the expression for nt such that the point not	1+8
b) Light of wavelen	gth 5000 A ⁰ is incident ag. Find the difference in the difference in the spectra. The number of	he angle of deviation in	6
a) State Biot's and S strength due to a s	avart's law. Find the expre traight conductor which ca	irries some current on it.	2+7
b) A parallel plate cap	pacitor has a capacitance of	100x10 ⁻¹² F, a plate of	

		area of 100 cm ² mica (k=7) is used as a dielectric, at 50 volts potential difference. Calculate the electric field intensity and magnitude of induced change.	
5.	a)	Enlist the Maxwell's electromagnetic wave equation, with day	
	4)	in differential form.	
	b)	A wire of resistance 6 Ω is stretched by 20% what is the resistance	9
	,	wire? Assume that resistivity remains same.	
6.	a)	the averaggion for schrodinger time depart.	6
	b)	If 10mH inductor and two capacitors of 5 µF and 2 µF are given, find the two resonant frequencies that can be obtained by connection	0
		the two resonant frequencies that can be obtained by connecting	
		the two resonant frequencies that can be obtained by connecting these elements in different ways.	+
7.	Wri	te short notes on: (Any two)	,
	a)	Semi-conductor interms of Band theory.	2×
	b)	Optical fiber	
,	c)	Lorentz force.	